Prove $(a^2+b^2)(c^2+d^2)\ge (ac+bd)^2$ for all $a,b,c,d\in\mathbb{R}$.
So $(a^2+b^2)(c^2+d^2) = a^2c^2+a^2d^2+b^2c^2+b^2d^2$
and $(ac+bd)^2 = a^2c^2+2acbd+b^2d^2$
So the problem is reduced to proving that $a^2d^2+b^2c^2\ge2acbd$ but I am not sure how to show that