I feel like I've got the answer, but I've never been good at putting what I think into words.
$\begin{vmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{vmatrix} = 0 = n_{11}n_{22} - n_{12}n_{21}$
$\begin{vmatrix} n_{11} + 1 & n_{12} \\ n_{21} & n_{22} + 1 \end{vmatrix} = n_{11}n_{22} + n_{11} + n_{22} + 1 - n_{12}n_{21} = \begin{vmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{vmatrix} + n_{11} + n_{22} + 1 = n_{11} + n_{22} + 1$
Which shows that it's true for a 2*2 matrix.
Looking at other 2*2 matrices
$\begin{vmatrix} n_{11} + 1 & n_{12} \\ n_{21} & n_{22} \end{vmatrix} = n_{11}n_{22} + n_{22} - n_{12}n_{21} = \begin{vmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{vmatrix} + n_{22} = n_{22}$
Similarly:
$\begin{vmatrix}
n_{11} & n_{12} \\
n_{21} & n_{22} + 1
\end{vmatrix} = n_{11}$
$\begin{vmatrix} n_{11} & n_{12} + 1 \\ n_{21} & n_{22} \end{vmatrix} = -n_{21}$
$\begin{vmatrix} n_{11} & n_{12} \\ n_{21} + 1 & n_{22} \end{vmatrix} = -n_{12}$
Positive if on the main diagonal, negative if on the side diagonal.
Using that, we can show that
$\begin{vmatrix}
n_{11} + 1 & n_{12} & n_{13} \\
n_{21} & n_{22} + 1 & n_{23} \\
n_{31} & n_{32} & n_{33} + 1
\end{vmatrix} = (n_{11} + 1)(n_{22} + n_{33} + 1) - n_{12}n_{21} - n_{13}n_{31} = n_{11}n_{22} - n_{12}n_{21} + n_{11}n_{33} - n_{13}n_{31} + n_{11} + n_{22} + n_{33} + 1 = n_{11} + n_{22} + n_{33} + 1$
And in a similar fashion we can apply this to higher order matrices.
But I haven't the slightest clue how to word or show this "similar fashion".