\begin{align}
\left(1 + a\mathrm{e}^{x^{2}}\right)^{-1}
&= \frac{1}{a}\mathrm{e}^{-x^{2}} \frac{1}{1+\frac{1}{a\mathrm{exp}(x^{2})}} \\
&= \frac{1}{a}\mathrm{e}^{-x^{2}} \sum\limits_{n=0}^{\infty} (-1)^{n} \left( \frac{1}{a}\mathrm{e}^{-x^{2}}\right)^{n} \\
&= \sum\limits_{n=0}^{\infty} (-1)^{n} \frac{1}{a^{n+1}} \mathrm{e}^{-(n+1)x^{2}} \\
\end{align}
Now integrate the exponential function
\begin{equation}
\int\limits_{0}^{\infty} \mathrm{e}^{-(n+1)x^{2}} \mathrm{d}x = \frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{n+1}}
\end{equation}
Now we have
\begin{equation}
\int\limits_{0}^{\infty} \left(1 + a\mathrm{e}^{x^{2}}\right)^{-1} \mathrm{d}x =
\frac{\sqrt{\pi}}{2} \sum\limits_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{1/2}} \frac{1}{a^{n}}
\end{equation}
Taking the derivative of both sides with respect to $a$:
\begin{equation}
\int\limits_{0}^{\infty} \mathrm{e}^{x^{2}} \left(1 + a\mathrm{e}^{x^{2}}\right)^{-2} \mathrm{d}x =
\frac{\sqrt{\pi}}{2} \sum\limits_{n=0}^{\infty} (-1)^{n-1} \frac{1}{n^{-1/2}} \frac{1}{a^{n+1}}
\end{equation}
Taking $\lim_{a \to 1}$
\begin{align}
\int\limits_{0}^{\infty} \mathrm{e}^{x^{2}} \left(1 + \mathrm{e}^{x^{2}}\right)^{-2} \mathrm{d}x &=
\frac{\sqrt{\pi}}{2} \sum\limits_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{-1/2}} \\
&= \frac{\sqrt{\pi}}{2} \eta(-1/2) \\
&\approx 0.336859119
\end{align}
$\eta(s)$ is the Dirichlet eta function.
Addendum: Response to robjohn's comment.
From the reference I provided for the Dirichlet eta function:
"The following relation holds:
$$\eta(s) = (1 − 2^{1 − s})\zeta(s)$$
While the Dirichlet series expansion for the eta function is convergent only for any complex number $s$ with real part > 0, it is Abel summable for any complex number. This serves to define the eta function as an entire function."