$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\infty}{\dd x \over x^{\alpha}\pars{1 + x}} =
\int_{0}^{\infty}{x^{\pars{\color{red}{1 - \alpha}} - 1} \over
1 + x}\,\dd x
\\[2mm] & \mbox{is a nice example of}\
\underline{Ramanujan's\ Master\ Theorem}\, :
\\[3mm] &\
\begin{array}{ll}
{\Large \bullet} & \ds{1 \over 1 + x}\
\mbox{expansion in powers of}\ \ds{x}\ \mbox{is given by}
\\ & \ds{\sum_{k = 0}^{\infty}\pars{-x}^{k} =
\sum_{k = 0}^{\infty}\Gamma\pars{\color{red}{k} + 1}
\,{\pars{-x}^{k} \over k!}}
\\[5mm]
{\Large \bullet} & \mbox{The}\ \underline{integral\ value}\
\mbox{is given by}\
\\
& \ds{\Gamma\pars{\color{red}{1 - \alpha}}
\color{red}{\Gamma\pars{-\bracks{1 - \alpha} + 1}}} =
\bbx{\pi \over \sin\pars{\pi\alpha}} \\ &
\end{array}
\end{align}
Ramanujan's Master Theorem.