I know that $\sqrt{1}=\sqrt{(-1)*(-1)}$ and we can't expand $\sqrt{(-1)*(-1)}$ as $\sqrt{-1}*\sqrt{-1}$ since the later part becomes $\iota$*$\iota$ which becomes -1 which is not equals the original number we are given-$1$.
But I want to know why we can't take square root of two imaginary numbers in product to be equals the product of square roots of two imaginary numbers by distributing the square root function over the two numbers under the square root function?