The example I'm doing gives an equation $$L(y, y') = \frac{y'}{y}$$
then $$\frac{\partial L}{\partial y} = -\frac{y'}{y^2}$$ and $$\frac{\partial L}{\partial y'} = \frac{1}{y}$$ ... $$\frac{d}{dx}\frac{\partial L}{\partial y'} = \frac{d}{dx}\frac{1}{y} = -\frac{y'}{y^2}$$
substituting into the Euler Lagrange $$\frac{\partial L}{\partial y} = \frac{d}{dx} \frac{\partial L}{\partial y'}$$ then yields $$-\frac{y'}{y^2} = -\frac{y'}{y^2}$$
Does this mean that any differentiable function $y$ is a solution to the Euler-Lagrange equation for that Lagrangian??