Let $F = ax^2 + bxy + cy^2$ be a binary quadratic form over $\mathbb{Z}$. We say $D = b^2 - 4ac$ is the discriminant of $F$. Let $m$ be an integer. If $m = ax^2 + bxy + cy^2$ has a solution in $\mathbb{Z}^2$, we say $m$ is represented by $F$.
My question Is the following proposition true? If yes, how do we prove it?
Proposition Let $D$ be a non-square integer such that $D \equiv 0$ (mod $4$) or $D \equiv 1$ (mod $4$). Let $F$ be the principal form of discriminant $D$(for the definition, see this question). Suppose $m$ and $n$ are represented by $F$, then $mn$ is also represented by $F$.