METHODOLOGY $1$: With Calculus
Let $f(x)=\sum_{n=0}^\infty x^n$. For $|x|<1$, the geometric series converges to $f(x)=\frac{1}{1-x}$.
Note that the series $\sum_{n=0}^\infty nx^{n-1}$, formed by differentiating term-by-term, converges uniformly for all $|x|\le r<1$.
Since the series representation for $f(x)$ converges, then we have $f'(x)=\frac{1}{(1-x)^2}=\sum_{n=0}^\infty nx^{n-1}$ for all $|x|<1$. Hence, we have $\sum_{n=0}^\infty nx^n=\frac{x}{(1-x)^2}$
Now, letting $x=\frac14$, we find
$$\sum_{n=0}^\infty \frac{n}{4^n}=\frac{1/4}{(1-(1/4))^2}=\frac{4}{9}$$
METHODOLOGY $2$: Without Calculus
Note that we can write
$$\begin{align}
\sum_{n=0}^\infty nx^n&=\sum_{n=1}^\infty x^n\sum_{m=1}^{n}(1)\\\\
&=\sum_{m=1}^\infty \sum_{n=m}^{\infty}x^n\\\\
&=\sum_{m=1}^\infty \frac{x^m}{1-x} \\\\
&=\frac{x}{(1-x)^2}
\end{align}$$