This integral is from integral
Find $$\int_0^\infty\tan\left(\frac x{\sqrt{x^3+x^2}}\right)\frac{\ln(1+\sqrt x)}xdx$$
I have get $$\int_0^\infty\tan\left(\frac x{\sqrt{x^3+x^2}}\right)\frac{\ln(1+\sqrt x)}xdx=\int_0^{\infty}\tan\left(\frac1{\sqrt{x+1}}\right)\frac{\ln(1+\sqrt x)}{x}dx$$ Let$$\dfrac{1}{\sqrt{x+1}}=t$$ that $$I=\int_{0}^{1}\dfrac{\tan{t}\ln{\left(1+\sqrt{\frac{1}{t^2}-1}\right)}}{t-t^3}dt$$ This integral is have closed form ?