$$\lim_{n\rightarrow \infty} \left[ \left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\cdots \left(1+\frac{n}{n}\right)\right]^\frac{1}{n}$$
$$=\lim_{n\rightarrow \infty} \left[ \left(1+\frac{1}{n}\right)^n\left(1+\frac{2}{n}\right)^n\cdots \left(1+\frac{n}{n}\right)^n\right]^\frac{1}{n^2}$$
Now use the characteristic of $e$ that $\lim_{n \to \infty}(1+\frac m n)^{n}=\lim_{n \to \infty}(1+\frac 1 n)^{m \,n}$
$$=\lim_{n\rightarrow \infty} \left[ \left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{n}\right)^{2n}\cdots \left(1+\frac{1}{n}\right)^{n^2}\right]^\frac{1}{n^2}$$
$$=\lim_{n\rightarrow \infty} \left[ \left(1+\frac{1}{n}\right)^{n(1+2+3+4+...+n)}\right]^\frac{1}{n^2}$$
$$=\lim_{n\rightarrow \infty} \left[ \left(1+\frac{1}{n}\right)^{n(\frac {n^2+n}{2})}\right]^\frac{1}{n^2}$$
$$=\lim_{n \to \infty}(1+\frac 1 n)^{n(\frac1 2+\frac 1 {2n})}$$
$$=e^{\frac 1 2 + 0}=\sqrt e$$