Assume that $f,f_j\subset L^2(\mathbb{R}^n)$ for $j=1,2,3,\dots$, $f_j\to f$ a.e and $\int f_j^2\to \int f^2 dx$.
Prove $\int|f_j-f|^2\to 0$.
Assume that $f,f_j\subset L^2(\mathbb{R}^n)$ for $j=1,2,3,\dots$, $f_j\to f$ a.e and $\int f_j^2\to \int f^2 dx$.
Prove $\int|f_j-f|^2\to 0$.
Since $$ |f_j-f|^2 \leq 4(|f_j|^2 + |f|^2) $$ you can apply Fatou's lemma to the difference $$ g_j = 4(|f_j|^2 + |f|^2) - |f_j-f|^2 $$ which is non-negative and converges to $8|f|^2$. This gives you what you want.