What is the simplest monotone increasing, continuous function that satisfies these constraints?
\begin{align} \frac{f(x)}{f(-x)} &= e^x \\ \lim_{x\to\infty} \frac{f(x)}{x} &= 1 \end{align}
I guess this implies that \begin{align} \lim_{x\to-\infty} \frac{f(x)}{-xe^{x}} &= 1? \end{align}
$$\implies\left(\frac{f(x)}{f(-x)}\right)^a=\left(e^x\right)^a=e^{ax}=\frac{f(ax)}{f(-ax)}$$
$$\left(\frac{f(x)}{f(-x)}\right)^a=\frac{f(ax)}{f(-ax)}$$
– Simply Beautiful Art Sep 02 '16 at 23:22