Let $X_1, X_2$ are independent and both have Poisson distriubution with $\lambda=1$. Find $P\left(\frac{X_1+X_2}{2}\le 1\right)$
Let $X_1, X_2, ...$ are independent and all of them have Poisson distriubution with $\lambda=1$. $\lim_{n\to\infty}P\left(\frac{X_1+...+X_n}{n}\le 1\right)$
My attemption:
1.
$P\left(\frac{X_1+X_2}{2}\le 1\right)=P\left(\frac{X_1+X_2}{2}=0\right)+P\left(\frac{X_1+X_2}{2}=1\right)= P\left(X_1+X_2=0\right)+P\left(X_1+X_2=2\right)$
Now, I don't know why we get assumption about independence. After all, I don't need it. We know, that if $X_1 \tilde {} Poiss(a), X_2\tilde{}Poiss(b) $ then $X_1+X_2\tilde {} Poiss(a+b)$.
So, in our case $X_1+X_2\tilde{} Poiss(2)$, hence $X_1+X_2=X3\tilde{} Poiss(2)$
$P(X_3=0)+P(X_3=1)=\frac{2^0}{0!}e^{-2}+\frac{2^1}{1!}e^{-2}=3e^{-2}$
At this moment I am not going to begin 2. becase I didn't finish 1.. In particular I don't understand why assumption about independence is given.
Can you help me ?