Let $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a,b \in \mathbb{Z} \}$. Then
(a) Prove that $\mathbb{Z}[\sqrt{2}]$ is a commutative ring.
(b) Determine the units of $(\mathbb{Z}[\sqrt{2}])\neq 0 $.
(c) Find a subring $S$ of $\mathbb{Z}[\sqrt{2}]$ such that $S\neq \mathbb{Z} $ and $S \neq \mathbb{Z}[\sqrt{2}] $.
I do not know how to do parts (b) and (c).