4

simplify $$\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}$$

1.$\frac{3}{2}$

2.$\frac{\sqrt[3]{65}}{4}$

3.$\sqrt[3]{2}$

4.$1$

I equal it to $\sqrt[3]{a}+\sqrt[3]{b}$ but I cant find $a$ and $b$

Taha Akbari
  • 3,559

3 Answers3

8

Let $X=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}$ From $(A+B)^3=A^3+B^3+3AB(A+B)$ we get the equation $$X^3-3ABX-(A^3+B^3)=0$$ We have $(AB)^3=({5+2\sqrt{13}})({5-2\sqrt{13}})=-27\Rightarrow {AB}=-3$ and $A^3+B^3=10$. Hence our equation $$X^3+9X-10=0\iff (X-1)(X^2+X+10)=0$$ Thus $$X=1$$ It is the $4$ the asked simplification.

Piquito
  • 29,594
2

Note your number $\alpha$

It turns out that (after some calculation) that $\alpha^3=10-9\alpha$

1 seems to do the trick...

Vincent
  • 2,318
  • There is no reason for the downvote. Note that this answer is basically the same as mine. I put an upvote. – Piquito Sep 01 '16 at 09:41
0

Hint: Rewrite $x_{1,2}=5\pm 2\sqrt{13}$ in polar coorinates $x=|x|\exp(i\phi_{1,2})$. Determine $|x_{1,2}|=\sqrt{5^2+(2\sqrt{13})^2}$ and $\tan(\phi_{1,2})=\frac{\pm 2\sqrt{13}}{4}$

Use the periodicity of the exponential function in the complex domain $\sqrt[3]{x_{1,2}}=|x_{1,2}|^{1/3}\exp(i\phi_{1,2}/3+2\pi k/3)$, in which $k \in \mathbb{Z}$ (you will have to check which range of values for $k$ give new solutions.

MrYouMath
  • 15,833