simplify $$\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}$$
1.$\frac{3}{2}$
2.$\frac{\sqrt[3]{65}}{4}$
3.$\sqrt[3]{2}$
4.$1$
I equal it to $\sqrt[3]{a}+\sqrt[3]{b}$ but I cant find $a$ and $b$
simplify $$\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}$$
1.$\frac{3}{2}$
2.$\frac{\sqrt[3]{65}}{4}$
3.$\sqrt[3]{2}$
4.$1$
I equal it to $\sqrt[3]{a}+\sqrt[3]{b}$ but I cant find $a$ and $b$
Let $X=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}$ From $(A+B)^3=A^3+B^3+3AB(A+B)$ we get the equation $$X^3-3ABX-(A^3+B^3)=0$$ We have $(AB)^3=({5+2\sqrt{13}})({5-2\sqrt{13}})=-27\Rightarrow {AB}=-3$ and $A^3+B^3=10$. Hence our equation $$X^3+9X-10=0\iff (X-1)(X^2+X+10)=0$$ Thus $$X=1$$ It is the $4$ the asked simplification.
Note your number $\alpha$
It turns out that (after some calculation) that $\alpha^3=10-9\alpha$
1 seems to do the trick...
Hint: Rewrite $x_{1,2}=5\pm 2\sqrt{13}$ in polar coorinates $x=|x|\exp(i\phi_{1,2})$. Determine $|x_{1,2}|=\sqrt{5^2+(2\sqrt{13})^2}$ and $\tan(\phi_{1,2})=\frac{\pm 2\sqrt{13}}{4}$
Use the periodicity of the exponential function in the complex domain $\sqrt[3]{x_{1,2}}=|x_{1,2}|^{1/3}\exp(i\phi_{1,2}/3+2\pi k/3)$, in which $k \in \mathbb{Z}$ (you will have to check which range of values for $k$ give new solutions.