A very efficient way forward circumvents use of the Dominated Convergence Theorem and instead exploits Frullani's Theorem. Proceeding, we obtain
$$\frac1h \int_0^\infty \frac{e^{-(t+h)x}-e^{-tx}}{hx} \,dx=\frac1h \log\left( \frac{t}{t+h}\right)$$
The limit as $h\to 0$ is straightforward to evaluate with the answer $-\frac1t$. And we are done!
If one wishes to proceed through use of the Dominated Convergence Theorem, then the following primer will facilitate analysis.
PRIMER:
In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the exponential function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{1+x\le e^x\le \frac{1}{1-x}} \tag 1$$
for $x<1$.
Herein, we use the inequality on the left-hand side of $(1)$ to establish a coveted dominating function. To that end, we proceed.
Note that we can write the integrand $\frac{e^{-(t+h)x}-e^{-tx}}{hx}$ as
$$\begin{align}
\frac{e^{-(t+h)x}-e^{-tx}}{hx}&=e^{-tx}\left(\frac{e^{-hx}-1}{hx}\right) \tag{2a}\\\\
&=e^{-(t+h)x}\left( \frac{1-e^{hx}}{hx} \right) \tag{2b}
\end{align}$$
Note that the term in parentheses on the right-hand side of $(2a)$ is non-positive for all $x\in [0,\infty$ and all $h$. Applying the left-hand side inequality in $(1)$ to $(2a)$, we find immediately that for $h>0$
$$\left|\frac{e^{-hx}-1}{hx}\right|\le 1$$
for $x\ge 0$, $h>0$.
For $h<0$, we take $|h|<t/2$. Then, applying the left-hand side inequality in $(1)$ to $(2b)$, we see analogously that
$$\left| \frac{1-e^{hx}}{hx} \right|\le 1$$
for $x\ge 0$, $h<0$.
Hence, we have
$$\left|\frac{e^{-(t+h)x}-e^{-tx}}{hx}\right|\le e^{-tx/2}$$
for all $x\ge 0$ and all $|h|\le t/2$.
Inasmuch as $\int_0^\infty e^{-tx/2}\,dx=\frac2t <\infty$, the Dominated Convergence Theorem guarantees that
$$\begin{align}
\lim_{h\to 0}\int_0^\infty \frac{e^{-(t+h)x}-e^{-tx}}{hx}\,dx&=\int_0^\infty \lim_{h\to 0}\left(\frac{e^{-(t+h)x}-e^{-tx}}{hx}\right)\,dx\\\\
&=-\int_0^\infty e^{-tx}\,dx\\\\
&=-\frac1t
\end{align}$$
And we are done!