$$\sum_{k=n+1}^{2n}\frac{1}{k}$$
We would like to approximate this sum using Riemann integral.
My approach is following:
Let $f:[n+1, 2n]\to \mathbb{R}$, $f(n)=\frac1n$. Let $P=(x_0, x_1,..., x_n)=(n+1, n+2, ..., 2n)$
Then $$\sum_{k=n+1}^{2n}\frac{1}{k}=\sum_{i=1}^{n}f(x_{i+1})(x_{i+1}-x_i)=\sum_{i=1}^{n}f(x_{i+1})$$
So, we have that $$\sum_{k=n+1}^{2n}\frac{1}{k}\to \int_{[n+1,2n]}\frac1xdx$$
I am not sure if I am ok, help me please understand these issues.