There are probably more efficient and easier proofs for same thing. This is proof I have to study for my exam.
Theorem: $(e^x)'=e^x$
Proof: For $x\ge 0$ we have defined $f_0(x)=\lim_{n\to +\infty}\left(1+\frac{x}{n}\right)^n.$ Exponential function is now defined by $$ f(x)=e^x= \begin{cases} f_0(x), & x\ge0 \\[4pt] \dfrac{1}{f_0(-x)}, & x\lt0 \end{cases}$$
For $x,c\gt0$ is
$$\frac{\left(1+\frac{x}{n}\right)^n-\left(1+\frac{c}{n}\right)^n}{x-c}=\frac{1}{n}\left[\left(1+\frac{x}{n}\right)^{n-1}+\left(1+\frac{x}{n}\right)^{n-2}\left(1+\frac{c}{n}\right)+\cdots+\left(1+\frac{x}{n}\right)\left(1+\frac{c}{n}\right)^{n-2}+\left(1+\frac{c}{n}\right)^{n-1}\right]$$
We have
$$\left(1+\frac{\min{(x,c)}}{n}\right)^{n-1} \le \frac{\left(1+\frac{x}{n}\right)^n-\left(1+\frac{c}{n}\right)^n}{x-c}\le \left(1+\frac{\max{(x,c)}}{n}\right)^{n-1}$$
For $n \rightarrow +\infty$ we have $$f_0(\min{(x,c))} \le \frac{f_0(x)-f_0(c)}{x-c} \le f_0(\max{(x,c))}$$
Functions $x \rightarrow \max{(x,c)}$ and $x \rightarrow \min{(x,c)}$ are continuous so for $x \rightarrow c$ is $$f_0^{'}(c) = \lim_{x\to c} \frac{f_0(x)-f_0(c)}{x-c} = f_0(c)$$
Now , for $ x\lt 0$ we have $f(x)=\frac{1}{f_0(-x)}$ , so$$ f'(x)=-\frac{f_0^{'}(-x)(-1)}{[f_0(-x)]^2}=\frac{f_0(-x)}{[f_0(-x)]^2}=\frac{1}{f_0(-x)}=f(x)$$
In case $c=0$ we have to separately look at left and right limit of $\frac{f(x)-1}{x}$. For $x\gt 0$ we have $1\le \frac{f_0(x)-1}{x} \le f_0(x)$, because of continuity of $f_0$ in $0$ and $f_0(0) = 1$ we have $$ \lim_{x\to 0+} \frac{f(x)-1}{x}=1=f(0) $$
For $x<0$ we have
$$\lim_{x\to 0-} \frac{f(x)-1}{x} = \lim_{x\to 0-} \frac{\frac{1}{f_0(-x)}-1}{x} = \lim_{-x\to 0+}\frac{f_0(-x)-1}{-x} \frac{1}{\lim_{-x\to 0+}f_0(-x)}=1=f(0)$$
Thus, $f'(0)=f(0)$. So, for $\forall x \in \mathbb{R}$ is $(e^x)'=e^x$.
I don't understand couple of things about this proof:
1. How does $(1+\frac{\min{(x,c)}}{n})^{n-1}$ go to $f_0(\min{x,c})$. We haven't got exponent $n$, but $n-1$?
2. Why is this valid: $ 1\le \frac{f_0(x)-1}{x} \le f_0(x)$ for $x\gt0$
3. Why is this valid : $\lim_{x\to 0-} \frac{\frac{1}{f_0(-x)}-1}{x} = \lim_{-x\to 0+}\frac{f_0(-x)-1}{-x} \frac{1}{\lim_{-x\to 0+}f_0(-x)}=1$
And one personal question, what do you think about this proof, and did your teacher in college requested something similar for you to know for exam?