Taken from Soo T. Tan's Calculus textbook Chapter 9.7 Exercise 27-
Define $$a_n=\frac{2\cdot 4\cdot 6\cdot\ldots\cdot 2n}{3\cdot 5\cdot7\cdot\ldots\cdot (2n+1)}$$ One needs to prove the convergence or divergence of the series $$\sum_{n=1}^{\infty} a_n$$
upon finding the radius of convergence for $\sum_{n=1}^{\infty}\frac{2\cdot 4\cdot 6\cdot\ldots\cdot 2n}{3\cdot 5\cdot7\cdot\ldots\cdot (2n+1)}\cdot x^{2n+1}$ to be $1$ and checking the endpoints. Also, please use tests and methods that are taught in introductory courses.
Answers show divergence but no without explanation.