I couldn't understand how I can get the following result on expansion:
$$3(1-3x)^{-2}=\sum_{n=0}^{\infty}(n+1)3^nx^n.$$ Any ideas?
I couldn't understand how I can get the following result on expansion:
$$3(1-3x)^{-2}=\sum_{n=0}^{\infty}(n+1)3^nx^n.$$ Any ideas?
$$\frac1{(1-3x)^2} =\frac13 \frac{d}{dx} \frac1{1-3x} = \frac13 \frac{d}{dx} \sum_{n=0}^{\infty} (3x)^n \\ = \sum_{n=0}^{\infty} \frac{d}{dx}3^{n-1} x^n = \sum_{n=1}^{\infty}3^{n-1}n x^{n-1} = \sum_{n=0}^{\infty} 3^n (n+1)x^n$$