Let $c>0$ be a real number. I would like to study the convergence of $a_n := c^n n!/n^n$, when $n \to \infty$, in function of $c$.
I know (from this question) that $n!>(n/e)^n$, so that $c^n n!/n^n>1$ for $c ≥e$. But this doesn't imply that the sequence goes to infinity. And I'm not sure what to do for $c<e$. I tried usual tests (D'Alembert...), without any success. I would like to avoid using Stirling approximation.
Thank you for your help!