Consider the line $a+bt$ where $a,b>0$. Let $B(t)$ be Brownian motion and let $\tau=\inf\{t>0:B(t)=a+bt\}$ be the first hitting time of that line, with the understanding that $\tau=\infty$ if the line is never hit. I want to compute the probability that Brownian motion hits that line, i.e. $P(\tau<\infty)$.
There are two steps in my work that I am not confident in.
Define the process $X(t)=B(t)-bt$ and let $T_a=\inf\{t>0:X(t)=a\}$, again with $T_a=\infty$ if $X(t)$ does not hit $a$. Then $\tau$ and $T_a$ have the same distribution (unsure about this) so we may instead calculate $P(T_a<\infty)$.
Let $\tilde{a}>0$ and define $T_{a,-\tilde{a}}=\inf\{t>0:X(t)=a \text{ or } X(t)=-\tilde{a}\}$ with $T_{a,-\tilde{a}}=\infty$ if $\{a,-\tilde{a}\}$ is never hit. The process $e^{2bX(t)}$ is a martingale and Doob's Optional Stopping theorem gives
$ \begin{align*} E(e^{2bX(T_{a,-\tilde{a}})})&=1, \\ e^{2ba}P(X(T_{a,-\tilde{a}})=a)+e^{-2b\tilde{a}}P(X(T_{a,b})=-\tilde{a})&=1. \end{align*} $
Letting $\tilde{a}\to\infty$,
$\begin{align*} e^{2ba}\lim_{\tilde{a}\to\infty}P(X(T_{a,-\tilde{a}})=a)&=1, \\ \lim_{\tilde{a}\to\infty}P(X(T_{a,-\tilde{a}})=a)&=e^{-2ba}, \\ P(T_a<\infty)&=e^{-2ba}. \end{align*} $
The last step where I say $\lim_{\tilde{a}\to\infty}P(X(T_{a,-\tilde{a}})=a)=P(T_a<\infty)$ I am also unsure about.