Prove that the following identity is valid for all $z$ with $z\neq1$:
$$1+z+z^2+...+z^n=\frac{1-z^{n+1}}{1-z}$$
Prove that the following identity is valid for all $z$ with $z\neq1$:
$$1+z+z^2+...+z^n=\frac{1-z^{n+1}}{1-z}$$
\begin{align} S=1+&z+z^2+z^3+\cdots+z^n\\ zS=\quad\quad&z+z^2+z^3+\cdots+z^n+z^{n+1}\\ \\ S-zS=1-z^{n+1}\\ S=\frac{1-z^{n+1}}{1-z} \end{align}
Multiply out $(1-z)(1+z+z^2+\dots+z^n)$.
You get $(1+z+z^2+\dots+z^n)-(z+z^2+z^3+\dots+z^{n+1})=1-z^{n+1}$.
By induction:
With $n=0$, $$1=\frac{1-z^1}{1-z}.$$
Then
$$S_n+z^{n+1}=\frac{1-z^{n+1}}{1-z}+z^{n+1}=\frac{1-z^{n+2}}{1-z}=S_{n+1}.$$
$$S_{n+1}=\frac{1-z^{n+1}}{1-z}=\frac{1-z+z-z^{n+1}}{1-z}=1+zS_{n},$$ with $S_0=1$.
Then the iterates are
$$S_0=1,S_1=1+z,S_2=1+z+z^2,S_3=1+z+z^2+z^3,\cdots$$