$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that
$\ds{\color{#f00}{\int_{0}^{\infty}{\ln^{2}\pars{x} \over x^{2} + 1}\,\dd x} =
\lim_{\mu \to 0}\,\partiald[2]{}{\mu}\int_{0}^{\infty}{x^{\mu} \over x^{2} + 1}\,\dd x}$.
The RHS integral is evaluated along a key-hole contour $\ds{\mc{KH}}$ with the $\ds{z^{\mu}}$-branch cut along the 'negative $\ds{x}$ axis'. Namely,
$\ds{-\pi < \,\mrm{arg}\pars{z} < \pi}$.
\begin{align}
\int_{\mc{KH}}\,\,{z^{\mu} \over z^{2} + 1}\,\dd z & =
2\pi\ic\pars{{\expo{-\pi\mu\ic/2} \over -\ic - \ic} +
{\expo{\pi\mu\ic/2} \over \ic + \ic}} = 2\pi\ic\sin\pars{{\pi \over 2}\,\mu}
\label{1}\tag{1}
\\[5mm] \mbox{Moreover,} &\
\\
\int_{\mc{KH}}\,\,{z^{\mu} \over z^{2} + 1}\,\dd z & =
\int_{-\infty}^{0}{\pars{-x}^{\,\mu}\expo{\pi\mu\ic} \over x^{2} + 1}\,\dd x +
\int_{0}^{-\infty}{\pars{-x}^{\,\mu}\expo{-\pi\mu\ic} \over x^{2} + 1}\,\dd x
\\[5mm] & =
\expo{\pi\mu\ic}\int_{0}^{\infty}{x^{\mu} \over x^{2} + 1}\,\dd x -
\expo{-\pi\mu\ic}\int_{0}^{\infty}{x^{\mu} \over x^{2} + 1}\,\dd x
\\[5mm] & =
2\ic\sin\pars{\pi\mu}\int_{0}^{\infty}{x^{\mu} \over x^{2} + 1}\,\dd x
\label{2}\tag{2}
\end{align}
With \eqref{1} and \eqref{2},
$$
\int_{0}^{\infty}{x^{\mu} \over x^{2} + 1}\,\dd x =
{2\pi\ic\sin\pars{\pi\mu/2} \over 2\ic\sin\pars{\pi\mu}} =
{\pi \over 2}\,\sec\pars{{\pi \over 2}\,\mu}
$$
and
\begin{align}
&\color{#f00}{\int_{0}^{\infty}{\ln^{2}\pars{x} \over x^{2} + 1}\,\dd x} =
{\pi \over 2}\,\lim_{\mu \to 0}\,\partiald[2]{\sec\pars{\pi\mu/2}}{\mu}
\\[5mm] = &\
{\pi \over 2}\,\lim_{\mu \to 0}\bracks{%
{\pi^{2} \over 4}\,\sec^{3}\pars{{\pi \over 2}\,\mu} +
{\pi^{2} \over 4}\,\sec\pars{{\pi \over 2}\,\mu}
\tan^{2}\pars{{\pi \over 2}\,\mu}} =
\color{#f00}{\pi^{3} \over 8} \approx 3.8758
\end{align}