0

List of axioms:

$(A1)$ - All Tautologies.

$(A2)$ - $(\forall x(\alpha \rightarrow \beta) \rightarrow (\forall x \alpha \rightarrow \forall x \beta)) $.

$(A3)$ - $(\forall x \alpha) \rightarrow [\alpha]^{t}_{x} $ if x is free for t in $\alpha$.

$(A4)$ - $\alpha \rightarrow (\forall x \alpha) $ if x is not free in $\alpha $.

$(A5)$ - $ x = x$

$(A6)$ - $(x=y) \rightarrow (\alpha \rightarrow \beta)$ if $\beta$ if obtained by substitution of at least one occurrence of x free for y in $\alpha$.

Modus Ponens as inference rule.

And Generalization Theorem:

If $\Gamma \vdash \phi$ and x do not occur free in any formula in $\Gamma$, then $\Gamma \vdash \forall x \phi$

In order to prove:

$\vdash (\alpha \rightarrow \exists x \beta) \leftrightarrow \exists x (\alpha \rightarrow \beta)$

I am trying to prove (consider x does not occur free in $\alpha$):

  1. $\vdash (\alpha \rightarrow \exists x \beta) \rightarrow \exists x (\alpha \rightarrow \beta)$

  2. $\vdash \exists x (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \exists x \beta) $

All the resolutions I saw uses Rule T (page 118) Enderton in the middle of the proof in order to prove 1 and 2. Is it possible to do without it?

Suposing 1.

  1. $(\alpha \rightarrow \exists x \beta)$
  2. $\forall x ¬(\alpha \rightarrow \beta) \rightarrow ¬(\alpha \rightarrow \beta)$ (A3)

Then i am trying to use the tautology: $¬(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow ¬\beta)$ but without success to reach $\exists x(\alpha \rightarrow \beta)$.

Bruno A
  • 81

0 Answers0