The post asks for a hint, but that was quite a while ago. For the sake of the site, I think a full answer might be useful:
$$
\begin{align}
&\int_0^{\pi/4}\log(1+\tan(x))\,\mathrm{d}x\\
&=\int_0^{\pi/4}\log(\cos(x)+\sin(x))\,\mathrm{d}x-\int_0^{\pi/4}\log(\cos(x))\,\mathrm{d}x\tag1\\
&=\int_0^{\pi/4}\log(\sqrt2\cos(\pi/4-x))\,\mathrm{d}x-\int_0^{\pi/4}\log(\cos(x))\,\mathrm{d}x\tag2\\
&=\frac\pi8\log(2)+\int_0^{\pi/4}\log(\cos(x))\,\mathrm{d}x-\int_0^{\pi/4}\log(\cos(x))\,\mathrm{d}x\tag3\\[6pt]
&=\frac\pi8\log(2)\tag4
\end{align}
$$
Explanation:
$(1)$: $1+\tan(x)=\frac{\cos(x)+\sin(x)}{\cos(x)}$
$(2)$: $\cos(x)+\sin(x)=\sqrt2\cos(\pi4-x)$
$(3)$: integrate the constant $\log(\sqrt2)$
$\phantom{\text{(3):}}$ substitute $x\mapsto\pi/4-x$ in the left integral
$(4)$: cancel