Prove that :- $A_n = 2903^n - 803^n - 464^n + 261^n$ is divisible by $1897$ for $n \in \mathbb{N}$
I tried induction but got no where :(.
$p(n)$ : $A_n = 2903^n - 803^n - 464^n + 261^n \mod 1897 = 0 $
for $p(1):$ the statement is true as $A_1 = 1897 \mod 1897 = 0$
let $p(k)$ : $A_k = 2903^k - 803^k - 464^k + 261^k \mod 1897 = 0 $
$$A_{k+1} = 2903^{k+1} - 803^{k+1} - 464^{k+1} + 261^{k+1}$$
$$\begin{align} A_{k+1}\mod 1897 & = 2903^{k+1} - 803^{k+1} - 464^{k+1} + 261^{k+1} \mod 1897 \\ &= 2903^{k+1} + - 803^{k+1} - 464^{k+1} + 261^{k+1} \mod 1897 \\ &= (1006 \times (2903^{k} \mod 1897) \\ & - 803\times (803^{k} \mod 1897) - 464\times (464^{k} \mod 1897) \\ & + 261 \times (261^{k} \mod 1897)) \mod 1897 \end{align}$$
Now i don't know what to do or even if what i did is correct or not. Hints are fine with me. thanks.