With regards to the corners and edges, the solution of the cube, and its difficulty will be entirely unchanged by your addition of stickers since the cube has only one solution for each of those. Every piece fits in one and only one place, and in only one orientation, in the final solution of the Rubik's cube.
This is because there is only one "yellow and red" edge cube and its only correct position is between the red and yellow axes, and with the red on the side of the red axis. The same rule applies for all squares on the cube.
That is to say, provided you begin with a cube on which all the orientable stickers are correctly oriented, it will still be solvable in exactly the same way as before, and if you begin with a cube which is solved other than the stickers incorrectly oriented, you will never be able to solve it.
HOWEVER... That only speaks for the edges and corners, and leaves the exceptions, which are the centre squares. These are different in that they CAN each have 4 different orientations in the finished cube, at least in theory. These are always ignored in analysis of the solution to the cube since they are fixed in position in relation to each other and their choice of which of their 4 orientations they are in, is indistinguishable. Therefore I've not seen material on whether the cube can be solved with different centre rotations.
I just marked the yellow, red, white and orange centre-squares of a solved cube with green crayon on the edge nearest to the green face. Then I mixed up and solved the cube, to discover that the centre squares can indeed achieve different orientations from one solution to the next. Therefore if you marked them, there would be between $4^6$ and $2$ different solutions depending on the symmetry of the rotation group of the axes. I can't give you a rigorous answer as to how many more permutations this introduces but judging by the pattern on my cube after solving I can make a guess in the dark that it will multiply the currently achievable number of arrangements of the cube by $2^3=8$.
Bear in mind however, the centre square of your cube shown in the picture does not have a distinguishable orientation.