Notice $\ \ \overbrace{x^4\!+x^2\!+1}^{\large f_{\Large n+1}} =\, (x^2\!-x+1)\,\overbrace{ (x^2\!+x+1)}^{\large f_{\Large n}} \,\ $ hence $\ f_n\mid f_{n+1}$
therefore by induction: $\ f_0\mid f_n\ $ for all $\ n \ge 0\,\ $ (in your case $\,f_0 = 7)$
Remark $ $ We can discover the factorization in many ways, e.g. by completing the square (see comment below), or, more generally, by the method of simpler multiples as below
$$x^2+x+1\,\ {\rm divides}\!\!\!\!\overbrace{\color{#0a0}{x^{\rm\large 2+\color{#c00}3\:\!J}}+x^{\rm\large 1+\color{#c00}3\:\!K}+\color{#90f}{x^{\rm\large \color{#c00}3L^{\phantom{|}}\!}}}^{\textstyle {\rm e.g.}\ \ \color{#0a0}{x^2}\ +\,\ x^4\,\ +\,\ \color{#90f}1\ \ {\rm in\ OP}\, \ \ \ }\qquad\qquad\qquad$$