This question can be homework for elementary calculus.
The lemniscate of Bernoulli $C$ is a plane curve defined as follows.
Let $a > 0$ be a real number. Let $F_1 = (a, 0)$ and $F_2 = (-a, 0)$ be two points of $\mathbb{R}^2$.
Let $C = \{P \in \mathbb{R}^2; PF_1\cdot PF_2 = a^2\}$.
Let's get the equation of $C$ in the polar coordinates.
Let $P = (r\cos\theta, r\sin\theta)$:
$$PF_1^2 = r^2 + a^2 - 2ar\cos\theta, PF_2^2 = r^2 + a^2 + 2ar\cos\theta$$ Hence: $$(r^2 + a^2 - 2ar\cos\theta)(r^2 + a^2 + 2ar\cos\theta) = (r^2 + a^2)^2 - 4a^2r^2\cos^2\theta = a^4$$ $$r^4 + 2r^2a^2 + a^4 - 4a^2r^2\cos^2\theta = a^4$$ $$r^2 = 2a^2(2\cos^2\theta - 1) = 2a^2\cos 2\theta$$
Suppose $P \in C$ is in the first quadrant. Let $s$ be the arc length between $O = (0, 0)$ and $P$.
Then how can we express $s$ by $r$ using an integral?