Claim. As $\epsilon \to 0$,
$$ \int_{0}^{1-\epsilon} \frac{\log(1-x)}{x \log^2 x} \, \mathrm{d}x = \frac{1+\log\epsilon}{\epsilon} + \frac{\gamma - 1 - \log(2\pi)}{2} + o(1). $$
Step 1. Applying the substitution $t = -\log x$ followed by integration by parts, we have
$$ \int_{0}^{1-\epsilon} \frac{\log(1-x)}{x (-\log x)^{s+1}} \, \mathrm{d}x = \frac{\eta^{-s}}{s} \log \epsilon + \frac{1}{s} \int_{\eta}^{\infty} \frac{t^{-s}}{\mathrm{e}^t - 1} \, \mathrm{d}t, \tag{1} $$
where $\eta = -\log(1-\epsilon)$. Now we focus on the latter integral, and define
$$ I = I(\eta, s) = \int_{\eta}^{\infty} \frac{t^{-s}}{\mathrm{e}^t - 1} \, \mathrm{d}t. $$
Step 2. Next, we give an explicit formula for $I(\eta, s)$ for small $\eta > 0$. (By small, we mean $\eta \in (0, 2\pi)$.) This is easily done by mimicking the derivation of the functional equation for $\zeta$ by contour integration. To this end, we first restrict ourselves to the case $\Re(s) \in (1, 2)$ and consider the contour
$\hspace{5em}$
Call by $C_{\eta}$ the entire contour and by $\Gamma_{\eta}$ the circular arc. Assuming the branch cut of $\log$ as $[0, \infty)$, this can be computed as
\begin{align*}
&I - \mathrm{e}^{-2\pi i s} I + \int_{\Gamma_{\eta}} \frac{z^{-s}}{\mathrm{e}^z - 1} \, \mathrm{d}z \\
&\hspace{3em} = \int_{C_{\eta}} \frac{z^{-s}}{\mathrm{e}^z - 1} \, \mathrm{d}z
= 2\pi i \sum_{n \in \Bbb{Z}\setminus\{0\}} \underset{z=2\pi i n}{\mathrm{Res}} \; \frac{z^{-s}}{\mathrm{e}^z - 1} \\
&\hspace{6em} = 2i \mathrm{e}^{-i\pi s} (2\pi)^{1-s} \cos\left(\frac{\pi s}{2}\right) \zeta(s).
\end{align*}
This gives
$$ I(\eta, s) = \frac{1}{1 - \mathrm{e}^{-2\pi i s}} \int_{-\Gamma_{\eta}} \frac{z^{-s}}{\mathrm{e}^z - 1} \, \mathrm{d}z + \frac{(2\pi)^{1-s}}{2\sin\left(\frac{\pi s}{2}\right)} \zeta(s) $$
Since both sides define entire functions on all of $\Bbb{C}$, this identity extends to all of $s \in \Bbb{C}$. Now we plug the power series $\frac{z}{\mathrm{e}^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n$ into the contour integral above to get
\begin{align*}
I(\eta, s)
&= \sum_{n=0}^{\infty} \frac{B_n}{n!} \frac{\eta^{n-s}}{s - n} + \frac{(2\pi)^{1-s}}{2\sin\left(\frac{\pi s}{2}\right)} \zeta(s) \tag{2} \\
&= \sum_{n=0}^{\infty} \frac{B_n}{n!} \frac{\eta^{n-s}}{s - n} + \Gamma(1-s)\zeta(1-s) \tag{3}
\end{align*}
Step 3. Now we consider the case of interest, i.e., $s = 1$. Taking limit as $s \to 1$ to $\text{(2)}$, only the first 2 leading terms of the series are significant (as $\eta \to 0$) and we can easily compute $I(\eta, 1)$ as
$$ I(\eta, 1) = \frac{1}{\eta} + \frac{1}{2} \log \eta + \frac{1}{2}(\gamma - \log(2\pi)) + \mathcal{O}(\eta). $$
Therefore the claim follows by plugging this to $\text{(1)}$ and utilizing the asymptotics
$$ \frac{1+\log \epsilon}{\eta} + \frac{1}{2}\log\eta = \frac{1+\log\epsilon}{\epsilon} - \frac{1}{2} + o(1). $$
Addendum 1. As a by-product, we can compute @Marco Cantarini's integral:
$$ \int_{0}^{1} \frac{\log(1-x)}{x} \left( \frac{1}{\log^{2} x} - \frac{1}{(1-x)^2} + \frac{1}{1-x}\right) \, \mathrm{d}x = \frac{\gamma + 1 - \log(2\pi)}{2}. $$
Addendum 2. Another by-product is that, for $N \in \Bbb{Z}$ and $N-1 < \Re(s) < N$ we have
$$ \int_{0}^{\infty} x^{s-1} \left( \frac{1}{\mathrm{e}^x - 1} - \sum_{n=-\infty}^{-N} a_n x^{n} \right) \, \mathrm{d}x = \Gamma(s)\zeta(s), $$
where $a_n$ are Laurent coefficients of $\frac{1}{\mathrm{e}^x - 1}$ at $x = 0$:
$$ \frac{1}{\mathrm{e}^x - 1} = \sum_{n=-\infty}^{\infty} a_n x^n = \sum_{n=-1}^{\infty} \frac{B_{n+1}}{(n+1)!} x^n. $$