At the page fractional calculus, completed Riemann zeta
it is claimed that the symmetric functional equation for the Dirichlet eta function is:
Formula 7.3.2 $$\Gamma\left(\frac{z}{2}\right)\pi^{\Large-\frac{z}{2}}(1-2^z)\eta(z)=\Gamma\left(\frac{1-z}{2}\right)\pi^{\Large-\frac{1-z}{2}}(1-2^{1-z})\eta(1-z) \;\;\;\;\;\;\;(1)$$
Where $z \neq 0,1 $
and the following equation that I have not checked:
$$\pi^{\Large-\frac{z}{2}}\Gamma\left\{\frac{1}{2}\left(\frac{1}{2}+z\right)\right\}\left(1-2^{\Large\frac{1}{2}+z}\right)\eta\left(\frac{1}{2}+z\right)=\pi^{\Large\frac{z}{2}}\Gamma\left\{\frac{1}{2}\left(\frac{1}{2}-z\right)\right\}\left(1-2^{\Large\frac{1}{2}-z}\right)\eta\left(\frac{1}{2}-z\right) \;\;\;\;\;\;\;\;\;(2)$$
Where $z \neq \pm \frac{1}{2} $
But is the first equation really correct? Is the Dirichlet eta function completed in this way? I am new to the symmetric functional equation for the Riemann zeta function but to my mind this seems to be equivalent to completing the zeta function as:
$$\zeta(1-z)\zeta(z)$$
which other mathematicians would say is not the way to complete the zeta function.
What is the correct way to complete the Dirichlet eta function?
$$\eta(s)=\zeta(s)\left(1-1/2^{s-1}\right)$$