By dehomogenizing the polynomials, it suffices to work with $f_p (x) = (x+1)^{p} - x^p - 1$. Let $g(x) = x^2 + x + 1$ and for any polynomial $f$, let $\text{ord}_g (f)$ denote the maximum power of $g$ that divides $f$. We claim $\text{ord}_g (f_p) = 1$ if $p \equiv 5 \pmod{6}$ and $\text{ord}_g (f_p) = 2$ if $p\equiv 1\pmod{6}$.
Let $\omega = (-1+\sqrt{-3})/2$ be the root of $g(x)$ with negative real part. We know $\omega^3 = 1$ and $\omega+1$ is a root of $x^2 - x + 1$, so $(\omega+1)^3 = -1$.
If $p \equiv 5 \pmod{6}$, writing $p=6k+5$ we find $$f_p (\omega) = (\omega + 1)^{6k+5} - \omega^{6k+5} - 1 = -(\omega+1)^2 - \omega^2 - 1 = -2(\omega^2 + \omega + 1) = 0.$$ Thus, $\omega$ is a root of $f_p$ and it follows $\overline{\omega}$ also is, hence $g$ divides $f_p$. But $\omega$ is not a root of $f_p'(x) = p(x+1)^{p-1} - px^{p-1}$ since $$f_p'(\omega) = p(\omega+1)^{6k+4} - \omega^{6k+4}) = p(-(\omega+1) - \omega) = -p(2\omega+1) \neq 0.$$ Thus, $g$ does not divide $f_p'$ and it follows $\text{ord}_g (f_p) = 1$.
However, if $p\equiv 1 \pmod{6}$, writing $p=6k+1$ we find $$f_p (\omega) = (\omega+1)^{6k+1} - \omega^{6k+1} - 1 = (\omega+1) - \omega - 1 = 0$$ and $$f_p'(\omega) = p((\omega+1)^{6k} - \omega^{6k}) = 0,$$ hence $g^2$ divides $f_p$. But $f_p ''(x) = p(p-1)(x+1)^{p-2} - p(p-1)x^{p-2}$ and $$f_p ''(\omega) = p(p-1)((\omega+1)^{6k-1} - \omega^{6k-1}) = p(p-1)\left(\frac{1}{\omega+1} - \frac{1}{\omega} \right) = p(p-1) \frac{-1}{\omega^2 + \omega} = p(p-1) \neq 0.$$ So $g^3$ does not divide $f_p$ and we conclude $\text{ord}_g (f_p) = 2$.