I read that the Albers projection (https://en.wikipedia.org/wiki/Albers_projection) is area-preserving. The projection is:
$$x=\frac{\sqrt{C-2n\sin \phi}\sin n \lambda}{n}$$ $$y=\rho_0 - \frac{\sqrt{C-2n\sin \phi}\cos n \lambda}{n}$$
So the Jacobean matrix is:
$$\dfrac{d(x, y)}{d(\phi, \lambda)} = \begin{bmatrix} \frac{-\sin n \lambda \cos \phi}{\sqrt{C-2n\sin \phi}} & \frac{\cos n \lambda \cos \phi}{\sqrt{C-2n\sin \phi}} \\ \sqrt{C-2n\sin \phi}\cos n \lambda & \sqrt{C-2n\sin \phi}\sin n \lambda \\ \end{bmatrix}$$
And the Jacobean has determinant
$$-\sin^2 n \lambda \cos \phi - \cos^2 n \lambda \cos \phi = -\cos \phi$$
However, for the projection to be area-preserving, it must have determinant $\pm1$. So where have I gone wrong with my calculations?