To find the determinant of the $n\times n$ Hilbert matrix, we will apply a sequence of row operations (multiplication on the left) and column operations (multiplication on the right) that will transform the Hilbert matrix into a diagonal matrix.
The Hilbert matrix is $H_0$ where the element in row $j\in[1,n]$ of column $k\in[1,n]$ of $H_m$ is given by
$$
h_m(j,k)=\left\{\begin{array}{cl}
\frac1{j+k-1}&\text{if $j=k$ or ($j\gt m$ and $k\gt m$)}\\
0&\text{otherwise}
\end{array}\right.\tag1
$$
for example, for $n=5$,
$$
H_0=\begin{bmatrix}
1 & \frac12 & \frac13 & \frac13 & \frac15 \\
\frac12 & \frac13 & \frac14 & \frac15 & \frac16 \\
\frac13 & \frac14 & \frac15 & \frac16 & \frac17 \\
\frac14 & \frac15 & \frac16 & \frac17 & \frac18 \\
\frac15 & \frac15 & \frac17 & \frac18 & \frac19
\end{bmatrix}
\quad\text{and}\quad
H_2=\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \frac13 & 0 & 0 & 0 \\
0 & 0 & \frac15 & \frac16 & \frac17 \\
0 & 0 & \frac16 & \frac17 & \frac18 \\
0 & 0 & \frac17 & \frac18 & \frac19
\end{bmatrix}\tag2
$$
etc.
For a given $m$, we will use element $(m,m)$ in $H_{m-1}$ as a pivot to clear out the rest of column $m$ using row operations and the rest of row $m$ using column operations.
For a given $m$, subtracting $\frac{2m-1}{j+m-1}$ times row $m$ from row $j$ in $H_{m-1}$ multiplies row $j$ by $\frac{j-m}{j+m-1}$ (left multiplication) and column $k$ by $\frac{k-m}{k+m-1}$ (right multiplication); that is,
$$
\frac1{j+k-1}-\frac{2m-1}{j+m-1}\frac1{k+m-1}=\frac{j-m}{j+m-1}\frac{k-m}{k+m-1}\frac1{j+k-1}\tag3
$$
Thus, if we define $T_m$ and $D_m$ by
$$
\begin{align}
t_m(j,k)&=\left\{\begin{array}{cl}
1&\text{if $j=k$}\\
-\frac{2m-1}{j+m-1}&\text{if $j\gt k$ and $k=m$}\\
0&\text{if $j\gt k$ and $k\ne m$ or $j\lt k$}
\end{array}\right.\tag{4a}\\
d_m(j,k)&=\left\{\begin{array}{cl}
1&\text{if $j=k$ and $k\le m$}\\
\frac{j+m-1}{j-m}&\text{if $j=k$ and $k\gt m$}\\
0&\text{if $j\ne k$}\\
\end{array}\right.\tag{4b}
\end{align}
$$
$(3)$ yields
$$
H_m=D_mT_mH_{m-1}\left(D_mT_m\right)^T\tag5
$$
Since $T_m$ is a lower triangular matrix with ones on the diagonal,
$$
\det(T_m)=1\tag{6a}
$$
Although we won't use it, it is not difficult to see that
$$
\det(D_m)=\binom{n+m-1}{n-m}\tag{6b}
$$
What we will use is that since
$$
\prod_{m=1}^nd_m(j,k)=\left\{\begin{array}{cl}
\binom{2j-2}{j-1}&\text{if $j=k$}\\
0&\text{if $j\ne k$}\\
\end{array}\right.\tag7
$$
we get
$$
\det\left(\prod_{m=1}^nD_m\right)=\prod_{j=1}^n\binom{2j-2}{j-1}\tag8
$$
Iterating the determinant of $(5)$ and applying $\text{(6a)}$, we get
$$
\left(\prod_{m=1}^n\det(D_m)\right)\det(H_0)\left(\prod_{m=1}^n\det\left(D_m^T\right)\right)=\det(H_n)\tag9
$$
Applying $(8)$ gives
$$
\begin{align}
\det(H_0)
&=\left(\prod_{m=1}^n\frac1{\det(D_m)}\right)\det(H_n)\left(\prod_{m=1}^n\frac1{\det\left(D_m^T\right)}\right)\tag{10a}\\
&=\prod_{j=1}^n\frac1{\binom{2j-2}{j-1}^2(2j-1)}\tag{10b}
\end{align}
$$