$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi/2}{\ln\pars{\sin\pars{x}}\ln\pars{\cos\pars{x}}
\over \tan\pars{x}}\,\dd x:\ {\large ?}}$
\begin{align}
&\int_{0}^{\pi/2}{\ln\pars{\sin\pars{x}}\ln\pars{\cos\pars{x}}\over \tan\pars{x}}\,\dd x
\,\,\,\stackrel{x\ =\ \arcsin\pars{t}}{=}\,\,\,
\int_{0}^{1}{\ln\pars{t}\ln\pars{\root{1 - t^{2}}} \over t\,/\root{1 - t^{2}}}\,
{\dd t \over \root{1 - t^{2}}}
\\[5mm]= &\
\half\int_{0}^{1}{\ln\pars{t}\ln\pars{1 - t^{2}} \over t}\,\dd t =
\half\int_{0}^{1}{\ln\pars{t^{1/2}}\ln\pars{1 - t}\over
t^{1/2}}\,\half\,t^{-1/2}\,\dd t
\\[5mm]
= &\
{1 \over 8}\int_{0}^{1}{\ln\pars{t}\ln\pars{1 - t} \over t}\,\dd t
=-\,{1 \over 8}\int_{0}^{1}{{\rm Li}_{1}\pars{t} \over t}\,\ln\pars{t}\,\dd t
=-\,{1 \over 8}\int_{0}^{1}{\rm Li}_{2}'\pars{t}\ln\pars{t}\,\dd t
\\[5mm]&={1 \over 8}\int_{0}^{1}{{\rm Li}_{2}\pars{t} \over t}\,\dd t
={1 \over 8}\int_{0}^{1}{\rm Li}_{3}'\pars{t}\,\dd t
={1 \over 8}\,{\rm Li}_{3}\pars{1} =
\bbox[10px,border:1px dotted navy]{\ds{\zeta\pars{3}}}
\approx 0.1503
\end{align}
$\ds{{\rm Li}_{\rm s}\pars{z}}$ is a
PolyLogarithm Function: I used some properties of them as reported in the cited link.
$\ds{\zeta\pars{s}}$ is the Riemann Zeta Function.