If $(x_n)$ converges to $a>0$, for any $\varepsilon >0$, there's an $n_0$ such that $\; a-\varepsilon <x_n < a+\varepsilon\;$ for each $n\ge n_0$. We choose $\varepsilon$ so that $a-\varepsilon>0$. To prove the assertion, supposing $n\ge n_0$ does not change the $ \limsup$. We'll compute the limits in $\overline{\mathbf R\!}\,$.
So let $n\ge n_0$, and $k\ge n$. Multiplying by $y_k$, we obtain
$$(a-\varepsilon)y_k \le x_k y_k \le a+\varepsilon)y_k,$$
whence
$$(a-\varepsilon)\sup_{k\ge n}y_k \le \sup_{k\ge n}x_ky_k\le (a+\varepsilon)\sup_{k\ge n}y_k$$
and finally
\begin{alignat*}{2}(a-\varepsilon)\lim_n\Bigl(\sup_{k\ge n}y_k\Bigr) &\le \lim_n\Bigl(\sup_{k\ge n}x_ky_k\Bigr)&&\le (a+\varepsilon)\lim_n\Bigl(\sup_{k\ge n}y_k\Bigr),
\\\text{i.e.}\qquad (a-\varepsilon)\limsup_{n}y_n&\le \limsup_{n}(x_ny_n)&&\le(a+\varepsilon)\limsup_{n}y_n.
\end{alignat*}
As these inequalities are true for any $\varepsilon>0$, this means
$$a\limsup_{n}y_n = \limsup_{n}(x_ny_n)=a\limsup_{n}y_n.$$