Comment : from here http://functions.wolfram.com/ZetaFuncti ... owAll.html We know that $$\displaystyle{L{i_2}\left( z \right) + L{i_2}\left( {\frac{1}{z}} \right) = - \frac{1}{2}{\log ^2}\left( { - z} \right) - \frac{{{\pi ^2}}}{6}} ,$$
Consequently $$\displaystyle{L{i_2}\left( {{e^{ - 2i\pi x}}} \right) + L{i_2}\left( {{e^{2i\pi x}}} \right) = - \frac{1}{2}{\log ^2}\left( { - {e^{2i\pi x}}} \right) - \frac{{{\pi ^2}}}{6}}$$
$$\displaystyle{S = 2\int\limits_0^1 {\left( {L{i_2}\left( {{e^{ - 2i\pi x}}} \right) + L{i_2}\left( {{e^{2i\pi x}}} \right)} \right)\log \left( {\Gamma \left( x \right)} \right)dx} = }$$ $$\displaystyle{2\int\limits_0^1 {\left( { - \frac{1}{2}{{\log }^2}\left( { - {e^{2i\pi x}}} \right) - \frac{{{\pi ^2}}}{6}} \right)\log \left( {\Gamma \left( x \right)} \right)dx} = }$$
$$\displaystyle{ = \int\limits_0^1 {\left( { - {{\log }^2}\left( {{e^{i\pi \left( {2x - 1} \right)}}} \right) - \frac{{{\pi ^2}}}{3}} \right)\log \left( {\Gamma \left( x \right)} \right)dx} = \int\limits_0^1 {\left( { - {{\left( {i\pi \left( {2x - 1} \right)} \right)}^2} - \frac{{{\pi ^2}}}{3}} \right)\log \left( {\Gamma \left( x \right)} \right)dx} = }$$
$$\displaystyle{ = \int\limits_0^1 {\left( {{\pi ^2}{{\left( {2x - 1} \right)}^2} - \frac{{{\pi ^2}}}{3}} \right)\log \left( {\Gamma \left( x \right)} \right)dx} = {\pi ^2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\log \left( {\Gamma \left( x \right)} \right)dx} \mathop { = = = = }\limits^{x \to 1 - x} }$$
$$\displaystyle{ = {\pi ^2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\log \left( {\Gamma \left( {1 - x} \right)} \right)dx} \Rightarrow 2S = }$$ $$\displaystyle{{\pi ^2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\left( {\log \left( {\Gamma \left( {1 - x} \right)} \right) + \log \left( {\Gamma \left( x \right)} \right)} \right)dx} = }$$
$$\displaystyle{ = {\pi ^2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\log \left( {\Gamma \left( x \right)\Gamma \left( {1 - x} \right)} \right)dx} = {\pi ^2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\log \left( {\frac{\pi }{{\sin \pi x}}} \right)dx} = }$$
$$\displaystyle{ = {\pi ^2}\log \left( \pi \right)\underbrace {\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)dx} }_{ = 0} - {\pi ^2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\log \left( {\sin \pi x} \right)dx} }$$
$>\displaystyle{ = - {\pi ^2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\log \left( {\sin \pi x} \right)dx} }$$
Then $$\displaystyle{S = - \frac{{{\pi ^2}}}{2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\log \left( {\sin \pi x} \right)dx} }.$$ But $$\displaystyle{\sum\limits_{n = 1}^\infty {\frac{{\cos nx}}{n}} = - \log 2 - \log \left( {\sin \frac{x}{2}} \right)}$$ (it turned out multiple times)
so $$\displaystyle{\log \left( {\sin \pi x} \right) = - \log 2 - \sum\limits_{n = 1}^\infty {\frac{{\cos 2n\pi x}}{n}} }.$$ Consequently
$$\displaystyle{S = \frac{{{\pi ^2}}}{2}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\left( {\log 2 + \sum\limits_{n = 1}^\infty {\frac{{\cos 2n\pi x}}{n}} } \right)dx} = }$$
$$\displaystyle{ = \frac{{{\pi ^2}}}{2}\log 2\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)dx} + \frac{{{\pi ^2}}}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}\int\limits_0^1 {\left( {{{\left( {2x - 1} \right)}^2} - \frac{1}{3}} \right)\cos 2n\pi xdx} } }$$
$$\displaystyle{ = \frac{{{\pi ^2}}}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}\int\limits_0^1 {{{\left( {2x - 1} \right)}^2}\cos 2n\pi x\,dx} } }$$
But $$\displaystyle{\int\limits_0^1 {{{\left( {2x - 1} \right)}^2}\cos 2n\pi x\,dx} = \frac{2}{{{n^2}{\pi ^2}}}} (elementary) and finally \displaystyle{S = \frac{{{\pi ^2}}}{2}\sum\limits_{n = 1}^\infty {\frac{2}{{{n^3}{\pi ^2}}}} = \zeta \left( 3 \right)}$$ :) :)