The sum of $n$ terms of the series $$\frac{1}{2}+\frac{1}{2!}\left(\frac{1}{2}\right)^2+\frac{1\cdot 3}{3!}\left(\frac{1}{2}\right)^3+\frac{1\cdot 3 \cdot 5}{4!}\left(\frac{1}{2}\right)^4+\frac{1\cdot 3 \cdot 5 \cdot 7}{5!}\left(\frac{1}{2}\right)^5+....$$
And also calculate sum of $\infty$ terms.
$\bf{My\; Try::}$ We can write above series as $$ 1\underbrace{-\frac{1}{2}+\frac{1}{2!}\left(\frac{1}{2}\right)^2+\frac{1\cdot 3}{3!}\left(\frac{1}{2}\right)^3+\frac{1\cdot 3 \cdot 5}{4!}\left(\frac{1}{2}\right)^4+\frac{1\cdot 3 \cdot 5 \cdot 7}{5!}\left(\frac{1}{2}\right)^5+....}_{S_{n}}$$
So here $$\bf{r^{th}}\; terms \; of \; above\; series (T_{r}) = \frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2r-3)}{r!}\cdot \frac{1}{2^r}$$
So $$T_{r} = \frac{1}{3}\left[\frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2r-5)}{(r-1)!}\cdot \frac{1}{2^{r-1}}-\frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2r-3)}{r!}\cdot \frac{1}{2^r}\right]$$
So $$S_{n} = \sum^{n}_{r=1}T_{r} = \frac{1}{3}\sum^{n}_{r=1}\left[\frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2r-5)}{(r-1)!}\cdot \frac{1}{2^{r-1}}-\frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2r-3)}{r!}\cdot \frac{1}{2^r}\right]$$
So $$S_{n} = \frac{1}{3}\left[-3-\frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2n-3)}{n!}\cdot \frac{1}{2^n}\right] = -1+\frac{1}{3}\frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2n-3)}{n!}\cdot \frac{1}{2^n}$$
So our Sum is $$=\frac{1}{3}\frac{1\cdot 3 \cdot 5\cdot \cdot \cdot \cdot (2n-3)}{n!}\cdot \frac{1}{2^n}$$
Is my process is right or not, If not the how can i calculate it, Thanks