Alternate algebraic proof
Consider any prime factor $p$, we will show that $p$ divides the numerator more times than it divides the denominator.
The number of times $p$ divides $k!$, for any $k$, is given by:
$$
\sum_{i \ge 1} \left\lfloor \frac{k}{p^i} \right\rfloor
=
\left\lfloor \frac{k}{p} \right\rfloor
+ \left\lfloor \frac{k}{p^2} \right\rfloor
+ \left\lfloor \frac{k}{p^3} \right\rfloor
+ \left\lfloor \frac{k}{p^4} \right\rfloor
+ \cdots.
$$
Therefore, the number of factors of $p$ in the numerator is
$$
\sum_{i \ge 1} \left\lfloor \frac{n!}{p^i} \right\rfloor \tag{1}
$$
And the number of factors of $p$ in the denominator is
$$
(n-1)! \cdot \sum_{i \ge 1} \left\lfloor \frac{n}{p^i} \right\rfloor
= \sum_{i \ge 1} (n-1)! \left\lfloor \frac{n}{p^i} \right\rfloor
$$
The result follows term-by-term, since
$$
(n-1)! \left\lfloor \frac{n}{p^i} \right\rfloor \le
\left\lfloor \frac{(n-1)! \cdot n}{p^i} \right\rfloor
= \left\lfloor \frac{n!}{p^i} \right\rfloor .
$$