can you explain for me the arithmetic manipulation:
Let p a prime number, so
$\frac{1}{p-1}≡\frac{1}{-1}≡-1 (\text{mod}\ p)$
$\frac{1}{p-2}≡\frac{1}{-2}≡\frac{-1}{2} (\text{mod}\ p)$
$\frac{1}{p-3}≡\frac{1}{-3}≡\frac{-1}{3} (\text{mod}\ p)$
$\vdots$
$\frac{1}{p-3}≡\frac{1}{-3}≡\frac{-1}{3} (\text{mod}\ p)$
I understand that $p-k≡-k(\text{mod}\ p)$ for any natural p, but I can't figure out how to generalize for a fraction of type $\frac{1}{p-k}≡\frac{-1}{k}(\text{mod}\ p)$. I can't understand, how can you explain it?