Can I use Dirichlet's test?
I know that$\displaystyle\int_{a}^{b}\sin x\le 1$.
Also, $\displaystyle\frac{\ln x}{x^2\sqrt{x^2-4}}$ is monotonic.
Also, $\displaystyle\lim_{x\to \infty} \frac{\ln x}{x^2\sqrt{x^2-4}} =0$
Can then conclude that the series converges?