Good night. I'm stuck in this prove.
Prove if $\left\{ a_{n}\right\} $ is a sequence and $$\lim_{n\rightarrow\infty}a_{n}=L$$ then $$\lim_{n\rightarrow\infty}\frac{a_{1}+a_{2}+...+a_{n}}{n}=L$$
I make this:
$\mid\frac{a_{1}+...+a_{n}}{n}-L\mid=\mid\frac{a_{1}+...+a_{n}-nL}{n}\mid\leq\frac{\mid a_{1}-L\mid+...+\mid a_{N}-L\mid+\mid a_{N+1}-L\mid+...+\mid a_{n}-L\mid}{n}=\frac{\mid a_{1}-L\mid+...+\mid a_{N-1}-L\mid}{n}+\frac{\mid a_{N}-L\mid+\mid a_{N+1}-L\mid+...+\mid a_{n}-L\mid}{n}$
And I'm stuck, please help!!