I found the following integrals in "Tables of Integrals, Series and Products Vol. 8" p. 494-495
$$\int_0^{\infty}e^{-\beta \sqrt{\gamma^2+x^2}} \, \mathrm{cos}(b \, x) \, \mathrm{d}x= \frac{\beta \, \gamma}{A} \, \mathrm{K}_1(\gamma A)$$
$$\int_0^{\infty} \sqrt{\gamma^2+x^2} e^{-\beta \sqrt{\gamma^2+x^2}} \, \mathrm{cos}(b \, x) \, \mathrm{d}x= \frac{\beta^2 \, \gamma^2}{A^2} \, \mathrm{K}_0(\gamma A)+\left(\frac{2\beta^2 \, \gamma}{A^3}-\frac{\gamma}{A}\right) \mathrm{K}_1(\gamma A)$$
$$\int_0^{\infty} (\gamma^2+x^2) e^{-\beta \sqrt{\gamma^2+x^2}} \, \mathrm{cos}(b \, x) \, \mathrm{d}x= \left(\frac{-3\beta \, \gamma^2}{A^2}+\frac{4\beta^3 \gamma^2}{A^4}\right) \, \mathrm{K}_0(\gamma A)+ \\ +\left(\frac{-6 \beta \, \gamma}{A^3}+\frac{8\beta^3\gamma}{A^5}+\frac{\beta^3\gamma^3}{A^3}\right)\mathrm{K}_1(\gamma A)$$
$$\int_0^{\infty}\frac{1}{\sqrt{\gamma^2+x^2}}e^{-\beta \sqrt{\gamma^2+x^2}} \, \mathrm{cos}(b \, x) \, \mathrm{d}x= \mathrm{K}_0(\gamma A)$$
with $A=\sqrt{\beta^2+b^2}$, Re$[\beta]>0$, Re$[\gamma]>0$, $b>0$.
It seems to me that there is some kind of system behind it. Can anybody give me a hint to proof this formulars? There are similar ones for $\mathrm{sin}(b \, x)$.
I would like to solve the integral
$$\int_0^{\infty} \frac{1}{\gamma^2+x^2} e^{-\beta \sqrt{\gamma^2+x^2}} \, \mathrm{cos}(b \, x)\, \mathrm{d}x$$
There is another one in the tables
$$\int_0^{\infty} \left(\frac{1}{\beta(\gamma^2+x^2)^{3/2}}+\frac{1}{\gamma^2+x^2}\right) e^{-\beta \sqrt{\gamma^2+x^2}} \, \mathrm{cos}(b \, x) \, \mathrm{d}x= \frac{1}{\beta \gamma} A \, \mathrm{K}_1(\gamma A)$$