$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{\sec^2x}{\sqrt[3]{\tan\ x}}dx$$
$$f(x) = (\tan \ x)^{\frac{2}{3}}, \ f'(x) = \frac{2}{3} \cdot (\tan \ x)^{-\frac{1}{3}} \cdot \sec^2x$$
$$\therefore \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{\sec^2x}{\sqrt[3]{\tan\ x}}dx = \frac{3}{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{2}{3}\frac{\sec^2x}{\sqrt[3]{\tan\ x}}dx = \frac{3}{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{f'(x)}{f(x)}dx$$
$$\therefore \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{\sec^2x}{\sqrt[3]{\tan\ x}}dx = \frac{3}{2}[\ln(\tan \ x)^{\frac{2}{3}}]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \frac{3}{2}[\ln(\sqrt{3})^\frac{2}{3}-\ln(1)^\frac{2}{3}]=\frac{3}{2}[\ln(\sqrt{3})^\frac{2}{3}] = \bf \color{red}{\ln(\sqrt{3})}$$
However, the answer given is not this value, but instead $= \frac{3\sqrt[3]{3}-3}{2} \approx 0.663... $ while $\ln(\sqrt{3}) \approx 0.549...$