I have a question with 2 possible solutions. and I can not decide which is right.
The question
Given $b>0$ and a function $f:(-b,b)\rightarrow\mathbb{R}$
, the second derivative exists at 0 and continuous at that point.
also known that $f'(0)\neq0$
Use taylor polynomial properties to calculate the following limit
$\underset{x\rightarrow0}{\lim}\frac{1}{f(x)-f(0)}-\frac{1}{xf'(0)}$
The answer:
Using the taylor polynomial and the remainder we can say that
$f(x)=P_{1}(x)+R_{1}(x)$
i.e $f(x)=f(0)+x\cdot f'(x)+R_{1}(x)$
$\rightarrow R_{1}(x)=f(x)-f(0)-x\cdot f'(x)$
$\rightarrow-R_{1}(x)=f(0)+x\cdot f'(x)-f(x)$
Now distributing we get
$\frac{1}{f(x)-f(0)}-\frac{1}{xf'(0)}=\frac{x\cdot f'(x)+f(0)-f(x)}{xf'(0)\left(f(x)-f(0)\right)}=\frac{-R_{1}(x)}{xf'(0)\left(f(x)-f(0)\right)}$
*Here comes the doubt.
As a conclution from Cauchy's mean value theorem for functions we get that
$\underset{x\rightarrow0}{\lim}\frac{R_{1}(x)}{x}=0$ for this particular function.
Therefore : $\underset{x\rightarrow0}{\lim}\frac{1}{f(x)-f(0)}-\frac{1}{xf'(0)}=\underset{x\rightarrow0}{\lim}\frac{-R_{1}(x)}{xf'(0)\left(f(x)-f(0)\right)}=\overset{0}{\overbrace{\underset{x\rightarrow0}{\lim}\frac{R_{1}(x)}{x}}}\cdot\underset{x\rightarrow0}{\lim}\frac{1}{f'(0)\left(f(x)-f(0)\right)}$
Now to deal with the limit $\underset{x\rightarrow0}{\lim}\frac{1}{f'(0)\left(f(x)-f(0)\right)}$ I think to use the property
“if a fucntion has a derivative then it must be continuous at the point.”
Which means this function must have a limit at this point(in our case x=0)
If the function has a limit then it is bounded. i.e $\forall x\in(0-\delta,0+\delta)\,\,\,f(x)\leq M\in\mathbb{R}$
this means that the whole expression is bounded. $f'(0)\left(f(x)-f(0)\right)\leq f'(0)\left(M-f(0)\right)$
And consequently $\frac{1}{f'(0)\left(f(x)-f(0)\right)}$ is bounded...
Therefore a limit of a bounded function on an iterval and a function that goes to zero in the same interval is 0
(+)Second option using the lagrange remainder instead:
because the second derivative exists we can express the “l'agrange remainder” around zero as :
$R_{1}(x)=\frac{f''(c)}{2}x^{2} where \left|c-0\right|<\left|x-0\right|$
Therefore
$\frac{1}{f(x)-f(0)}-\frac{1}{xf'(0)}=\frac{-\frac{f''(c)}{2}x^{2}}{xf'(0)\left(f(x)-f(0)\right)}=\frac{-1}{2f'(0)}\cdot\frac{x}{\left(f(x)-f(0)\right)}\cdot f''(c)$
Calculating the limits
$\underset{x\rightarrow0}{\lim}\frac{-1}{2f'(0)}=\frac{-1}{2f'(0)}$
$\underset{x\rightarrow0}{\lim}\frac{x}{\left(f(x)-f(0)\right)}=\frac{x-0}{\left(f(x)-f(0)\right)}=\frac{1}{f'(0)}$
$\underset{x\rightarrow0}{\lim}f''(c)=f''(0)$ because$ \left|c-0\right|<\left|x-0\right|$ and$ f''$ is continuous.
Then the final answer is:
$\underset{x\rightarrow0}{\lim}\frac{1}{f(x)-f(0)}-\frac{1}{xf'(0)}=\frac{-1}{2\left(f'(0)\right)^{2}}f''(0)$