I want to find out sum of the following series:
$${m \choose m}+{m+1 \choose m}+{m+2 \choose m}+...+{n \choose m}$$
My try:
${m \choose m}+{m+1 \choose m}+{m+2 \choose m}+...+{n \choose m}$ = Coefficient of $x^m$ in the expansion of $(1+x)^m + (1+x)^{m+1} + ... + (1+x)^n$
Or, Coefficient of $x^m$
$$\frac{(1+x)^{m}((1+x)^{n}-1)}{1+x-1}$$
$$=\frac{(1+x)^{m+n}-(1+x)^{m}}{x}$$
But, how to proceed further?
Note: $m≤n$