3

The value of $$\tan^{-1}\left(\frac{1}{\sqrt2}\right) - \tan^{-1}\left(\frac{\sqrt{5 - 2{\sqrt6}}}{1+ \sqrt{6}}\right)$$is equal to

  1. $\frac{\pi}{6}$
  2. $\frac{\pi}{4}$
  3. $\frac{\pi}{3}$
  4. $\frac{\pi}{12} $

$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) - \tan^{-1}\left(\frac{\sqrt{3} -\sqrt{2}}{1+ \sqrt{6}}\right)$$ $$\tan^{-1}\left(\frac{1}{\sqrt2}\right) -\tan^{-1}{\sqrt3} + \tan^{-1} {\sqrt2} $$ $$\implies\frac{\pi}{2} -\frac{\pi}{3}=\frac{\pi}{6}$$

Another possibility is
$$\tan^{-1}\left(\frac{1}{\sqrt2}\right) +\tan^{-1}{\sqrt3} - \tan^{-1} {\sqrt2} $$ How to solve this ?

Aakash Kumar
  • 3,480

6 Answers6

7

$$\dfrac{\sqrt{5-2\sqrt6}}{1+\sqrt6}=\dfrac{\sqrt3-\sqrt2}{1+\sqrt3\cdot\sqrt2}$$

$$\implies\arctan\dfrac{\sqrt{5-2\sqrt6}}{1+\sqrt6}=\arctan\sqrt3-\arctan\sqrt2$$

$$\arctan\sqrt3=\dfrac\pi3$$ and

$$\arctan\sqrt2=\text{arccot}\dfrac1{\sqrt2}=\dfrac\pi2-\arctan\dfrac1{\sqrt2}$$

3

By using identities $$\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}$$ and $$\tan^{-1}{\alpha}-\tan^{-1}{\beta}=\tan^{-1}(\frac{\alpha-\beta}{1+\alpha\beta}),$$ after a little calculation, we get $$\tan^{-1}\left(\frac{1}{\sqrt2}\right) - \tan^{-1}\left(\frac{\sqrt{5 - 2{\sqrt6}}}{1+ \sqrt{6}}\right)=\tan^{-1}(\frac{1}{\sqrt{3}})=\frac{\pi}{6}$$

alans
  • 6,475
2

Using the fact that $\tan { \left( \alpha -\beta \right) =\frac { \tan { \alpha -\tan { \beta } } }{ 1+\tan { \alpha \tan { \beta } } } } ,\tan { \left( \tan ^{ -1 }{ \alpha } \right) =\alpha } $$$\tan ^{ -1 } \left( \frac { 1 }{ \sqrt { 2 } } \right) -\tan ^{ -1 } \left( \frac { \sqrt { 5-2{ \sqrt { 6 } } } }{ 1+\sqrt { 6 } } \right) =t\ \tan { \left( \tan ^{ -1 } \left( \frac { 1 }{ \sqrt { 2 } } \right) -\tan ^{ -1 } \left( \frac { \sqrt { 5-2{ \sqrt { 6 } } } }{ 1+\sqrt { 6 } } \right) \right) =\tan { t } } \ \frac { \tan { \left( \tan ^{ -1 } \left( \frac { 1 }{ \sqrt { 2 } } \right) \right) -\tan { \left( \tan ^{ -1 } \left( \frac { \sqrt { 5-2{ \sqrt { 6 } } } }{ 1+\sqrt { 6 } } \right) \right) } } }{ 1+\tan { \left( \tan ^{ -1 } \left( \frac { 1 }{ \sqrt { 2 } } \right) \right) \tan { \left( \tan ^{ -1 } \left( \frac { \sqrt { 5-2{ \sqrt { 6 } } } }{ 1+\sqrt { 6 } } \right) \right) } } } =\tan { t } \ \tan { t } =\frac { \frac { 1 }{ \sqrt { 2 } } -\frac { \sqrt { 5-2{ \sqrt { 6 } } } }{ 1+\sqrt { 6 } } }{ 1+\frac { 1 }{ \sqrt { 2 } } \left( \frac { \sqrt { 5-2{ \sqrt { 6 } } } }{ 1+\sqrt { 6 } } \right) } =\frac { \frac { 1 }{ \sqrt { 2 } } -\frac { \sqrt { 3 } -\sqrt { 2 } }{ 1+\sqrt { 6 } } }{ 1+\frac { 1 }{ \sqrt { 2 } } \left( \frac { \sqrt { 3 } -\sqrt { 2 } }{ 1+\sqrt { 6 } } \right) } =\frac { 3 }{ 3\sqrt { 3 } } =\frac { 1 }{ \sqrt { 3 } } \ $$

so

$$\tan ^{ -1 } \left( \frac { 1 }{ \sqrt { 2 } } \right) -\tan ^{ -1 } \left( \frac { \sqrt { 5-2{ \sqrt { 6 } } } }{ 1+\sqrt { 6 } } \right) =\frac { \pi }{ 6 } $$

haqnatural
  • 21,578
1

Hint the second bracket is $\tan(\frac{\pi}{3}-\tan^{-1}\sqrt{2})$ now can you proceed further

1

We have for all $x >0$, $\tan^{-1} x + \tan^{-1} \frac1{x} = \pi/2$ (hint: take the derivative of LHS). Hence, the obtained expression is just:

$$\frac{\pi}2 - \tan^{-1} \sqrt 3 = \frac{\pi}2 - \frac{\pi}3 = \frac{\pi}6$$

  • You are meaning $x>0$, I suppose. For $x<0$, $\arctan x+\arctan(1/x)=-\pi/2$. – egreg Jul 30 '16 at 11:19
  • @egreg yes, thank you. A priori, the LHS has separate values on $(-\infty, 0)$ and $(0,\infty)$ because of discontinuity. I should've paid attention to that. –  Jul 30 '16 at 11:24
1

One should be careful when using identities related to the arctangent, because $\arctan\tan t=t$ only holds for $-\pi/2<t<\pi/2$. On the other hand, $\tan\arctan s=s$ holds without any condition.

Set $$ \alpha=\arctan\frac{1}{\sqrt{2}}, \qquad \beta=\arctan\frac{\sqrt{5-2\sqrt{6}}}{1+ \sqrt{6}}= \arctan\frac{\sqrt{3}-\sqrt{2}}{1+ \sqrt{6}} $$ Note that $$ 1\cdot(1+\sqrt{6})>\sqrt{2}\,(\sqrt{3}-\sqrt{2}) $$ so $\alpha>\beta$ and $0<\alpha-\beta<\pi/2$. Then $$ \tan(\alpha-\beta)= \frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}= \frac{\dfrac{1}{\sqrt{2}}-\dfrac{\sqrt{3}-\sqrt{2}}{1+ \sqrt{6}}} {1+\dfrac{1}{\sqrt{2}}\dfrac{\sqrt{3}-\sqrt{2}}{1+ \sqrt{6}}}= \frac{1}{\sqrt{3}} $$ Since $0<\alpha-\beta<\pi/2$, we can conclude $$ \alpha-\beta=\arctan\frac{1}{\sqrt{3}}=\frac{\pi}{6} $$

egreg
  • 238,574