PRIMER:
In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities
$$\bbox[5px,border:2px solid #C0A000]{\frac{x}{1+x}\le \log(1+x)\le x} \tag 1$$
for $x>-1$.
Note that we can write
$$\begin{align}
(1+3^n)^{1/n}&=3\left(1+\frac1{3^n}\right)^{1/n}\\\\
&=3e^{\frac1n \log\left(1+\frac{1}{3^n}\right)}\tag 2
\end{align}$$
Applying $(1)$ to $(2)$ we find that
$$\begin{align}
3e^{\frac{1}{n(1+3^n)}}\le (1+3^n)^{1/n}\le 3e^{\frac{1}{n3^n}} \tag 3
\end{align}$$
Finally, applying the squeeze theorem to $(3)$ reveals the coveted limit
$$\bbox[5px,border:2px solid #C0A000]{\lim_{n\to \infty}(1+3^n)^{1/n}=3}$$