Let $A$ be a $m \times n$ matrix with entries from some field $F$. Define the determinant rank of $A$ to be the largest possible size of a nonzero minor, i.e. the size of the largest invertible square submatrix of $A$. It is true that the determinant rank is equal to the rank of a matrix, which we define to be the dimension of the row/column space.
It's not difficult to see that $\text{rank} \geq \text{determinant rank}$. If some submatrix of $A$ is invertible, then its columns/rows are linearly indepedent, which implies that the corresponding rows/columns of $A$ are also linearly indepedent.
Is there a nice proof for the converse?